Book Review: Electric Vehicle Technology Explained- James Larminie, John Lowry

Here is the absolute definitive book on Electric Vehicles.  If you want a references for every imaginable aspect of electriv vehicle technology, save your pennies (it sells for $160, and is 300 pages) and order this up from the Wiley site here.  James Larminie and  John Lowry have compiled what can only be called the last word on the state of the art.

I’ve heard of this book, and many folks have referred to it, but only lately did I get a look at it.  “Impressive” barely describes it.

Beyond simply being exhaustive, it’s also very current.

Here’s the description from the Wiley website:

While the classic battery electric car continues to make only a small impact on the automobile market, other types of electric vehicle, especially hybrids, have made significant and promising improvements. Moreover, small battery electric vehicles such as bicycles and mobility aids are also developing well. Presenting more than 160 diagrams and pictures, this book explains the science and technology behind these important developments, and also introduces the issues that underpin the design and performance modelling of electric vehicles.

Electric Vehicle Technology Explained:

  • Encompasses a full range of electric vehicles: bicycles, mobility aids, delivery vehicles and buses – not just cars.
  • Covers all the basic technology relating to electric road vehicles – batteries, super capacitors, flywheels, fuel cells, electric motors and their controllers, and system design.
  • Considers the environmental benefits and disadvantages of electric vehicles and their component devices.
  • Includes case studies of a range of batteries, hybrids and fuel cell powered vehicles, from bicycles to buses.
  • Offers many MATLAB® examples explaining the design of appropriate computer prediction models.

Professionals, researchers and engineers in the electric vehicle industry as well as advanced students in electrical and mechanical engineering will benefit from this comprehensive coverage of electric vehicle technology.

Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 A Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Early days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 The relative decline of electric vehicles after 1910 . . . . . . . . 3

1.1.3 Uses for which battery electric vehicles have remained popular 5

1.2 Developments Towards the End of the 20th Century . . . . . . . . . . . . 5

1.3 Types of Electric Vehicle in Use Today . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Battery electric vehicles . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 The IC engine/electric hybrid vehicle . . . . . . . . . . . . . . . . 9

1.3.3 Fuelled electric vehicles . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.4 Electric vehicles using supply lines . . . . . . . . . . . . . . . . . . 18

1.3.5 Solar powered vehicles . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.6 Electric vehicles which use flywheels or super capacitors . . . 18

1.4 Electric Vehicles for the Future . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Battery Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Cell and battery voltages . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Charge (or Amphour) capacity . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Energy stored . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.4 Specific energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.5 Energy density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.6 Specific power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.7 Amphour (or charge) efficiency . . . . . . . . . . . . . . . . . . . . 28

2.2.8 Energy efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi Contents

2.2.9 Self-discharge rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.10 Battery geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.11 Battery temperature, heating and cooling needs . . . . . . . . . 29

2.2.12 Battery life and number of deep cycles . . . . . . . . . . . . . . . 29

2.3 Lead Acid Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Lead acid battery basics . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Special characteristics of lead acid batteries . . . . . . . . . . . 32

2.3.3 Battery life and maintenance . . . . . . . . . . . . . . . . . . . . . . 34

2.3.4 Battery charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.5 Summary of lead acid batteries . . . . . . . . . . . . . . . . . . . . 35

2.4 Nickel-based Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Nickel cadmium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.3 Nickel metal hydride batteries . . . . . . . . . . . . . . . . . . . . . 38

2.5 Sodium-based Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.2 Sodium sulphur batteries . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.3 Sodium metal chloride (Zebra) batteries . . . . . . . . . . . . . . 42

2.6 Lithium Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.2 The lithium polymer battery . . . . . . . . . . . . . . . . . . . . . . 45

2.6.3 The lithium ion battery . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7 Metal Air Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7.2 The aluminium air battery . . . . . . . . . . . . . . . . . . . . . . . 46

2.7.3 The zinc air battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8 Battery Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8.1 Battery chargers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8.2 Charge equalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.9 The Designer’s Choice of Battery . . . . . . . . . . . . . . . . . . . . . . . . 51

2.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.9.2 Batteries which are currently available commercially . . . . . . 52

2.10 Use of Batteries in Hybrid Vehicles . . . . . . . . . . . . . . . . . . . . . . . 53

2.10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.10.2 Internal combustion/battery electric hybrids . . . . . . . . . . . . 53

2.10.3 Battery/battery electric hybrids . . . . . . . . . . . . . . . . . . . . 53

2.10.4 Combinations using flywheels . . . . . . . . . . . . . . . . . . . . . 54

2.10.5 Complex hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.11 Battery Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.11.1 The purpose of battery modelling . . . . . . . . . . . . . . . . . . . 54

2.11.2 Battery equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . 55

2.11.3 Modelling battery capacity . . . . . . . . . . . . . . . . . . . . . . . 57

2.11.4 Simulation a battery at a set power . . . . . . . . . . . . . . . . . 61

2.11.5 Calculating the Peukert Coefficient . . . . . . . . . . . . . . . . . 64

2.11.6 Approximate battery sizing . . . . . . . . . . . . . . . . . . . . . . . 65

Contents vii

2.12 In Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Alternative and Novel Energy Sources and Stores . . . . . . . . . . . . . . . . 69

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Solar Photovoltaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Wind Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Flywheels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Super Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Supply Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1 Fuel Cells, a Real Option? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Hydrogen Fuel Cells: Basic Principles . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Electrode reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 Different electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.3 Fuel cell electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Fuel Cell Thermodynamics – an Introduction . . . . . . . . . . . . . . . . . 89

4.3.1 Fuel cell efficiency and efficiency limits . . . . . . . . . . . . . . . 89

4.3.2 Efficiency and the fuel cell voltage . . . . . . . . . . . . . . . . . . 92

4.3.3 Practical fuel cell voltages . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.4 The effect of pressure and gas concentration . . . . . . . . . . . 95

4.4 Connecting Cells in Series – the Bipolar Plate . . . . . . . . . . . . . . . . 96

4.5 Water Management in the PEM Fuel Cell . . . . . . . . . . . . . . . . . . . 101

4.5.1 Introduction to the water problem . . . . . . . . . . . . . . . . . . 101

4.5.2 The electrolyte of a PEM fuel cell . . . . . . . . . . . . . . . . . . 101

4.5.3 Keeping the PEM hydrated . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Thermal Management of the PEM Fuel Cell . . . . . . . . . . . . . . . . . 105

4.7 A Complete Fuel Cell System . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Hydrogen Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Fuel Reforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.1 Fuel cell requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.2 Steam reforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.3 Partial oxidation and autothermal reforming . . . . . . . . . . . 116

5.2.4 Further fuel processing: carbon monoxide removal . . . . . . . 117

5.2.5 Practical fuel processing for mobile applications . . . . . . . . 118

5.3 Hydrogen Storage I: Storage as Hydrogen . . . . . . . . . . . . . . . . . . . 119

5.3.1 Introduction to the problem . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.2 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.3 The storage of hydrogen as a compressed gas . . . . . . . . . . . 120

5.3.4 Storage of hydrogen as a liquid . . . . . . . . . . . . . . . . . . . . 122

viii Contents

5.3.5 Reversible metal hydride hydrogen stores . . . . . . . . . . . . . 124

5.3.6 Carbon nanofibres . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.7 Storage methods compared . . . . . . . . . . . . . . . . . . . . . . . 127

5.4 Hydrogen Storage II: Chemical Methods . . . . . . . . . . . . . . . . . . . . 127

5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4.2 Methanol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.3 Alkali metal hydrides . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4.4 Sodium borohydride . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.5 Ammonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4.6 Storage methods compared . . . . . . . . . . . . . . . . . . . . . . . 138

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Electric Machines and their Controllers . . . . . . . . . . . . . . . . . . . . . . . 141

6.1 The ‘Brushed’ DC Electric Motor . . . . . . . . . . . . . . . . . . . . . . . . 141

6.1.1 Operation of the basic DC motor . . . . . . . . . . . . . . . . . . . 141

6.1.2 Torque speed characteristics . . . . . . . . . . . . . . . . . . . . . . 143

6.1.3 Controlling the brushed DC motor . . . . . . . . . . . . . . . . . . 147

6.1.4 Providing the magnetic field for DC motors . . . . . . . . . . . . 147

6.1.5 DC motor efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1.6 Motor losses and motor size . . . . . . . . . . . . . . . . . . . . . . 151

6.1.7 Electric motors as brakes . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2 DC Regulation and Voltage Conversion . . . . . . . . . . . . . . . . . . . . 155

6.2.1 Switching devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2.2 Step-down or ‘buck’ regulators . . . . . . . . . . . . . . . . . . . . 157

6.2.3 Step-up or ‘boost’ switching regulator . . . . . . . . . . . . . . . 159

6.2.4 Single-phase inverters . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2.5 Three-phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.3 Brushless Electric Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3.2 The brushless DC motor . . . . . . . . . . . . . . . . . . . . . . . . 167

6.3.3 Switched reluctance motors . . . . . . . . . . . . . . . . . . . . . . 169

6.3.4 The induction motor . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.4 Motor Cooling, Efficiency, Size and Mass . . . . . . . . . . . . . . . . . . . 175

6.4.1 Improving motor efficiency . . . . . . . . . . . . . . . . . . . . . . . 175

6.4.2 Motor mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.5 Electrical Machines for Hybrid Vehicles . . . . . . . . . . . . . . . . . . . . 179

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7 Electric Vehicle Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.2 Tractive Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2.2 Rolling resistance force . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2.3 Aerodynamic drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.2.4 Hill climbing force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Contents ix

7.2.5 Acceleration force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.2.6 Total tractive effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.3 Modelling Vehicle Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.3.1 Acceleration performance parameters . . . . . . . . . . . . . . . . 188

7.3.2 Modelling the acceleration of an electric scooter . . . . . . . . 189

7.3.3 Modelling the acceleration of a small car . . . . . . . . . . . . . 193

7.4 Modelling Electric Vehicle Range . . . . . . . . . . . . . . . . . . . . . . . . 196

7.4.1 Driving cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.4.2 Range modelling of battery electric vehicles . . . . . . . . . . . . 201

7.4.3 Constant velocity range modelling . . . . . . . . . . . . . . . . . . 206

7.4.4 Other uses of simulations . . . . . . . . . . . . . . . . . . . . . . . . 207

7.4.5 Range modelling of fuel cell vehicles . . . . . . . . . . . . . . . . 208

7.4.6 Range modelling of hybrid electric vehicles . . . . . . . . . . . . 211

7.5 Simulations: a Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.2 Aerodynamic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.2.1 Aerodynamics and energy . . . . . . . . . . . . . . . . . . . . . . . . 213

8.2.2 Body/chassis aerodynamic shape . . . . . . . . . . . . . . . . . . . 217

8.3 Consideration of Rolling Resistance . . . . . . . . . . . . . . . . . . . . . . . 218

8.4 Transmission Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.5 Consideration of Vehicle Mass . . . . . . . . . . . . . . . . . . . . . . . . . . 223

8.6 Electric Vehicle Chassis and Body Design . . . . . . . . . . . . . . . . . . . 226

8.6.1 Body/chassis requirements . . . . . . . . . . . . . . . . . . . . . . . 226

8.6.2 Body/chassis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

8.6.3 Body/chassis strength, rigidity and crash resistance . . . . . . . 228

8.6.4 Designing for stability . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8.6.5 Suspension for electric vehicles . . . . . . . . . . . . . . . . . . . . 231

8.6.6 Examples of chassis used in modern battery and hybrid electric

vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.6.7 Chassis used in modern fuel cell electric vehicles . . . . . . . . 232

8.7 General Issues in Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8.7.1 Design specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8.7.2 Software in the use of electric vehicle design . . . . . . . . . . . 234

9 Design of Ancillary Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

9.2 Heating and Cooling Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

9.3 Design of the Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

9.4 Power Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

9.5 Choice of Tyres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

9.6 Wing Mirrors, Aerials and Luggage Racks . . . . . . . . . . . . . . . . . . 243

9.7 Electric Vehicle Recharging and Refuelling Systems . . . . . . . . . . . . 244

x Contents

10 Electric Vehicles and the Environment . . . . . . . . . . . . . . . . . . . . . . . . 245

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

10.2 Vehicle Pollution: the Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

10.3 Vehicles Pollution: a Quantitative Analysis . . . . . . . . . . . . . . . . . . 248

10.4 Vehicle Pollution in Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

10.5 Alternative and Sustainable Energy Used via the Grid . . . . . . . . . . . 254

10.5.1 Solar energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

10.5.2 Wind energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

10.5.3 Hydro energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

10.5.4 Tidal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

10.5.5 Biomass energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

10.5.6 Geothermal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

10.5.7 Nuclear energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

10.5.8 Marine current energy . . . . . . . . . . . . . . . . . . . . . . . . . . 257

10.5.9 Wave energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

10.6 Using Sustainable Energy with Fuelled Vehicles . . . . . . . . . . . . . . . 258

10.6.1 Fuel cells and renewable energy . . . . . . . . . . . . . . . . . . . 258

10.6.2 Use of sustainable energy with conventional IC engine vehicles 258

10.7 The Role of Regulations and Law Makers . . . . . . . . . . . . . . . . . . . 258

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

11 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

11.2 Rechargeable Battery Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . 261

11.2.1 Electric bicycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

11.2.2 Electric mobility aids . . . . . . . . . . . . . . . . . . . . . . . . . . 263

11.2.3 Low speed vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

11.2.4 Battery powered cars and vans . . . . . . . . . . . . . . . . . . . . 266

11.3 Hybrid Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

11.3.1 The Honda Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

11.3.2 The Toyota Prius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

11.4 Fuel Cell Powered Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Appendices: MATLABExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Appendix 1: Performance Simulation of the GM EV1 . . . . . . . . 279

Appendix 2: Importing and Creating Driving Cycles . . . . . . . . . 280

Appendix 3: Simulating One Cycle . . . . . . . . . . . . . . . . . . . . 282

Appendix 4: Range Simulation of the GM EV1 Electric Car . . . . 284

Appendix 5: Electric Scooter Range Modelling . . . . . . . . . . . . 286

Appendix 6: Fuel Cell Range Simulation . . . . . . . . . . . . . . . . 288

Appendix 7: Motor Efficiency Plots . . . . . . . . . . . . . . . . . . . . 290

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

About these ads

One response to “Book Review: Electric Vehicle Technology Explained- James Larminie, John Lowry

Comments?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s